Differential Evolutionary Algorithm Based on Multiple Vector Metrics for Semantic Similarity Assessment in Continuous Vector Space

نویسندگان

  • Yuanyuan Cai
  • Wei Lu
  • Xiaoping Che
  • Kailun Shi
چکیده

Automatic service discovery in heterogeneous environment is becoming one of the challenging problems for applications in semantic web, wireless sensor networks, etc. It is mainly due to the lack of accurate semantic similarity assessment between profile attributes of user request and web services. Generally, lexical semantic resources consist of corpus and domain knowledge. To improve similarity measures in terms of accuracy, various hybrid methods have been proposed to either integrate different semantic resources or combine various similarity methods based on a single resource. In this work, we propose a novel approach which combines vector similarity metrics in a continuous vector space to evaluate semantic similarity between concepts. This approach takes advantage of both corpus and knowledge base by constructing diverse vector space models. Specifically, we use differential evolutionary (DE) algorithm which is an powerful population-based stochastic search strategy for obtaining optimal value of the combination. Our approach has been validated against a variety of vector-based similarity approaches on multiple benchmark datasets. The empirical results demonstrate that our approach outperforms the state-of-the-art approaches. The results also indicate the continuous vectors are efficient for evaluating semantic similarity, since they have outstanding expressiveness to latent semantic features of words. Moreover, the robustness of our approach is presented by the steady measure results under different hyper-parameters of neural network. Keywords-differential evolutionary; semantic similarity; continuous vector space; vector similarity metrics

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sustainable Supplier Selection by a New Hybrid Support Vector-model based on the Cuckoo Optimization Algorithm

For assessing and selecting sustainable suppliers, this study considers a triple-bottom-line approach, including profit, people and planet, and regards business operations, environmental effects along with social responsibilities of the suppliers. Diverse metrics are acquainted with measure execution in these three issues. This study builds up a new hybrid intelligent model, namely COA-LS-SVM, ...

متن کامل

OPTIMAL DESIGN OF GRAVITY DAM USING DIFFERENTIAL EVOLUTION ALGORITHM

The shape optimization of gravity dam is posed as an optimization problem with goals of minimum value of concrete, stresses and maximum safety against overturning and sliding need to be achieved. Optimally designed structure generally saves large investments especially for a large structure. The size of hydraulic structures is usually huge and thus requires a huge investment. If the optimizatio...

متن کامل

Improving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms

One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...

متن کامل

Space Vector Modulation Based on Classification Method in Three-Phase Multi-Level Voltage Source Inverters

Pulse Width Modulation (PWM) techniques are commonly used to control the output voltage and current of DC to AC converters. Space Vector Modulation (SVM), of all PWM methods, has attracted attention because of its simplicity and desired properties in digital control of Three-Phase inverters. The main drawback of this PWM technique is &#10its complex and time-consuming computations in real-time ...

متن کامل

Space Vector Modulation Based on Classification Method in Three-Phase Multi-Level Voltage Source Inverters

Pulse Width Modulation (PWM) techniques are commonly used to control the output voltage and current of DC to AC converters. Space Vector Modulation (SVM), of all PWM methods, has attracted attention because of its simplicity and desired properties in digital control of Three-Phase inverters. The main drawback of this PWM technique is its complex and time-consuming computations in real-time im...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015